gulogo.gif  
 
1. Hiatus
2. RIP, Satoru Iwata
3. Let there be Robot Battles
4. Regarding pixel art!
5. 16-bit Star Wars
6. Goodbye, Spock.
7. James Randi Retires
8. More Star Wars on GOG
9. Archive.org gives you DOS Games
10. Ralph Baer, RIP.
1. Quickie: Impressions June 2014
2. Quickie: Penny Arcade Episode 3
3. Quickie: The Amazing Spider-Man
4. Quickie: Transformers: Fall of Cybertron
5. Quickie: Prototype 2
6. Quickie: Microsoft Kinect
7. Quickie: X-Men Destiny
8. Spider-Man: Edge of Time
9. Quickie: Transformers Dark of the Moon
10. Quickie: Borderlands GOTY
1. Musings 45: Penny Arcade and The Gripping Hand
2. Movie Review: Pacific Rim
3. Movie Review: Wreck-It Ralph
4. Glide Wrapper Repository
5. Movie Review: Winnie The Pooh
6. Musings 44: PC Gaming? Maybe it's on Life Support
7. Video Games Live 2009
8. Movie Review: District 9
9. Musings: Stardock, DRM, and Gamers' Rights
10. Musings: How DRM Hurts PC Gaming
Main Menu

Affiliates
X-bit labs
The Tech Zone
Twin Galaxies

Login






 Log in Problems?
 New User? Sign Up!


 Jun 04, 2008 - 04:55 PM - by Michael
* Fake Photos 101

Printer-friendly page Print this story   Email this to a friend
Personal Stuff/Random News
Scientific American offers a great article on spotting a fake photo complete with some nicely done examples:

For an image such as the one at the right, my group can estimate the direction of the light source for each person or object (arrows). Our method relies on the simple fact that the amount of light striking a surface depends on the relative orientation of the surface to the light source. A sphere, for example, is lit the most on the side facing the light and the least on the opposite side, with gradations of shading across its surface according to the angle between the surface and the direction to the light at each point.

To infer the light-source direction, you must know the local orientation of the surface. At most places on an object in an image, it is difficult to determine the orientation. The one exception is along a surface contour, where the orientation is perpendicular to the contour (red arrows right). By measuring the brightness and orientation along several points on a contour, our algorithm estimates the light-source direction.

 

Home :: Share Your Story
Site contents copyright Glide Underground.
Want to syndicate our news? Hook in to our RSS Feed.